Inicio
Home
Líneas de Investigación
Research Lines
Publicaciones
Articles
Personal
Staff
NIR-II Emission from Cyclometalated Dinuclear Pt(III) Complexes
Irene Melendo, Sara Fuertes, Antonio Martín, Violeta Sicilia
Inorg. Chem. 2024, articles asap
DOI: 10.1021/acs.inorgchem.3c04314

Half-lantern Pt(II) dinuclear complexes [{Pt(C∧Npz)(μ-S∧NR)}2] (HC∧Npz = 1-naphthalen-2-yl-1H-pyrazole; R = H, HS∧N: 2-mercaptopyrimidine 1; R = CF3, HS∧NF: 4-(trifluoromethyl)-2-mercaptopyrimidine 2) were selectively obtained as single isomers with the C∧N groups in an anti-arrangement and rather short metallophilic interactions (dPt–Pt = 2.8684(2) Å for 2). They reacted with haloforms in the air and sunlight to obtain the corresponding oxidized diplatinum(III) derivatives [{Pt(C∧Npz)(μ-S∧NR)X}2] (X = Cl (1-Cl), Br (1-Br), I (1-I, 2-I)). The single-crystal X-ray structures exhibit Pt–Pt distances typical for the existence of a metal–metal bond, which evidence fairly well the influence of the axial ligand (X). The reactions of 1 and 2 with CHI3 in the dark afforded mixtures of [IPt(C∧Npz)(μ-S∧N)2Pt(C∧Npz)CHI2] and 1-I or 2-I, with the former being the major species under an Ar atmosphere, while the reactions of 1 with CHBr3 and CHCl3 need light to occur. These Pt2(III,III) complexes display low-energy absorptions and emissions that strongly depend on the axial ligand. In the solid state, they show a broad NIR emission ranging from 985 to 1070 nm at RT that suffers a hypsochromic shift when cooling down to 77 K. The photoemissive behavior of the dinuclear Pt(II) and Pt(III) systems is disclosed with the aid of density functional theory calculations.

Inicio
Home
Líneas de Investigación
Research Lines
Publicaciones
Articles
Personal
Staff